Key Features
• No sample dilution, no solvent
• Only use 2 ml of oil
• 30 second test time with up to 31 elements simultaneously measured
• Sub PPM lower limit of detection (LOD) for most elements
• Push button operation, simple to use for both laboratory and on site applications
• Conforms to ASTM-D6595 (Oil) and ASTM-D6728 (Fuel)
Table 1. Typical source of elements analyzed by spectroscopy in oil
Metal | Engine, Transmission, Gears | Hydraulic Fluid | Coolants |
---|---|---|---|
Aluminum Al | Pistons or Crankcases on Reciprocating Engines, Housings, Bearing Surfaces, Pumps, Thrust Washers | Pumps, Thrust Washers Radiator Tanks, | Coolant Elbows, Piping, Thermostat, Spacer Plates |
Barium Ba | Synthetic Oil Additive Synthetic Fluid | Additive | Not Applicable |
Boron B | Coolant leak, Additive | Coolant Leak, Additive | pH Buffer, Anticorrosion Inhibitor |
Calcium Ca | Detergent Dispersant Additive, Water Contaminant, Airborne Contamination | Detergent Dispersant additive, Water Contaminant, Airborne Contamination | Hard Water Scaling Problem |
Chromium Cr | Pistons, Cylinder Liners, Exhaust Valves, Coolant Leak from Cr Corrosion Inhibitor | Shaft, Stainless Steel Alloys | Corrosion Inhibitor |
Copper Cu | Either brass or bronze alloy detected in conjunction with zinc for brass alloys and tin for bronze alloys. Bearings, Bushings, Thrust Plates, Oil Coolers, Oil Additive | Bushings, Thrust Plates, Oil Coolers | Radiator, Oil Cooler, Heater Core |
Iron Fe | Most common of wear metals. Cylinder Liners, Valve Guides, Rocker arms, Bearings, Crankshaft, Camshaft, Wrist Pins, Housing | Cylinders, Gears, Rods | Liners, Water Pump, Cylinder Block, Cylinder Head |
Lead Pb | Bearing Metal, Bushings, Seals, Solder, Grease, Leaded Gasoline | Bushings | Solder, Oil Cooler, Heater Core |
Magnesium Mg | Housings on Aircraft and Marine Systems, Oil Additive | Additive, Housings | Cast Alloys |
Molybdenum Mo | Piston Rings, Additive, Coolant contamination | Additive, Coolant Contamination | Anti-cavitation Inhibitor |
Nickel Ni | Alloy from Bearing Metal, Valve Trains, Turbine Blades | Not Applicable | Not Applicable |
Phosphorous P | Anti-wear Additive | Anti-wear Additive | pH Buffer |
Potassium K | Coolant Leak, Airborne Contaminant | Coolant Leak, Airborne Contaminant | pH Buffer |
Silicon Si | Airborne Dusts, Seals, Coolant Leak, Additive | Airborne Dusts, Seals, Coolant Leak, Additive | Anti-foaming and Anticorrosion Inhibitor |
Silver Ag | Bearing Cages (silver plating), Wrist Pin Bushings on EMD Diesel Engines, Piping with Silver Solder Joints from Oil Coolers | Silver Solder Joints from Lube Coolers | Not Applicable |
Sodium Na | Coolant Leak, Salt Water and Grease in Marine Equipment, Additive | Coolant Leak, Salt Water and Grease in Marine Equipment, Additive | Inhibitor |
Tin Sn | Bearing Metal, Piston Rings, Seals, Solder | Bearing Metal | Not Applicable |
Titanium Ti | Gas Turbine Bearing Hub Wear, Turbine Blades, Compressor Discs | Not Applicable | Not Applicable |
Zinc Zn | Anti-wear Additive | Anti-wear Additive | Wear Metal from Brass Components |
Figure 1. Emission Spectrum of Hydrogen
Figure 2. Emission Spectrum of Iron
Figure 3. RDE Spectrometer Sample Stand Showing Oil Sample Being “Burned”
This needs about 2 or 3 ml of sample based on the exact cap used. For elimination of sample carryover, a fresh disc and a newly sharpened rod are required. This method is known as the rotating disc electrode (RDE) optical emission spectroscopy (OES) , or combining the two, RDEOES. An optical system separates the light coming from the plasma into the discrete wavelengths of which it is comprised. An optical device known as a diffraction grating is used to separate the discreet wavelengths. Figure 4 shows the major components of an oil analysis spectrometer using a polychromator optic based on the Rowland Circle concept.Figure 4. Schematic of a Rotating Disc Electrode Optical Emission Spectrometer for Oil Analysis
During design of a spectrometer the key consideration is the region of the spectrum where the wavelengths of interest occur. Light is emitted by most elements in the visible region of the spectrum. There are elements that emit mainly in the Far Ultra Violet (FUV) region of the spectrum. This is significant as FUV radiation does not transmit well through air; rather, it is mostly absorbed. In order that the optical system is able to view spectral lines, it needs to be mounted in a vacuum chamber or filled with gas transparent to FUV light, so the emitted light can reach the grating, be diffracted, and then be detected at the focal curve. Hence a gas supply system or a vacuum pump and a sealed chamber are part of the system. A spectrometer’s readout system is controlled by industrial grade software and processor. An amplifier and a clocking circuit reads the charge on a Photo Multiplier Tube or CCD chip and converts it from an analog to digital (ADC) signal to measure the light that has fallen on a pixel. The charge on a pixel is converted to an arbitrary number defined as “intensity” units. Once the analysis is completed, the total intensities for each element are compared to calibration curves stored in memory and converted to the element concentration in the sample. Concentration is normally expressed in parts per million (ppm). This data can be printed on a printer or displayed on a video screen. On completion of the analysis or recording of results, the system is ready for the next analysis. The analysis results may be left on the screen, stored on the hard disk, or can be sent to an external computer. A conventional spectrometer of the 1970s is shown in Figure 5. Figure 6 shows the Spectroil Q100, which weighs only 163 lbs (74 kg) with a very small footprint while still maintaining the same analytical capability as the bigger systems in previous generations.Figure 5. A Direct Reading Oil Analysis Spectrometer from the 1970s
Figure 6. The Spectroil Q100 RDE Spectrometer
Figure 7. Robotics for RDE spectrometer
Figure 8. Automatic Rotrode Filter Spectroscopy (A-RFS) Fixture
The complete automation system is mounted to the spectrometer sample stand and fulfills all the functions of sequentially introducing and removing oil samples and exchanging graphite electrodes. It is self-contained and works independently of the spectrometer operating software.Table 2. Spectrometric Results in ppm for an EMD Medium Speed Diesel Locomotive
Fe | Cu | Ag | Mg | p | Zn | |
---|---|---|---|---|---|---|
30-Sep | 19 | 10 | 0 | 0 | 0 | 3 |
23-Dec | 21 | 10 | 0 | 0 | 9 | 3 |
23-Mar | 27 | 13 | 2 | 107 | 75 | 90 |
11-Jun | 25 | 30 | 10 | 220 | 110 | 123 |
This information has been sourced, reviewed and adapted from materials provided by AMETEK Spectro Scientific.
For more information on this source, please visit www.analisapelumas.com.